domingo, 24 de outubro de 2010

Radiação

Tudo sobre radiação
(diversas fontes)

Radiação

Origem: Wikipédia, a enciclopédia livre.

O internacionalmente reconhecido símbolo da radiação, trifólio(símbolo acima).Em física, radiação é a propagação da energia por meio de partículas ou ondas. Todos os corpos emitem radiação, basta estarem a uma determinada temperatura.

As radiações podem ser identificadas:

Pelo elemento condutor de energia:
Radiação eletromagnética - fótons.
Radiação corpuscular - partículas (prótons, nêutrons, etc.)
Radiação gravitacional - grávitons.
Pela fonte de radiação.
Radiação solar - causada pelo Sol.
Radiação de Cerenkov - causada por partículas com a velocidade superior a da luz no meio.
Radioatividade - núcleos instáveis.
Pelos seus efeitos:
Radiação ionizante - capaz de ionizar moléculas.
Radiação não ionizante - incapaz de ionizar moléculas.

Tipos de radiação:

Radiação alfa
Radiação beta
Radiação gama

Em geral, o conceito e uso da palavra energia se refere "ao potencial inato para executar trabalho ou realizar uma ação".
A palavra é usada em vários contextos diferentes. O uso científico tem um significado bem definido e preciso enquanto muitos outros não são tão específicos.
O termo energia também pode designar as reações de uma determinada condição de trabalho, por exemplo o calor, trabalho mecânico (movimento) ou luz. Estes que podem ser realizados por uma fonte inanimada (por exemplo motor, caldeira, refrigerador, alto-falante, lâmpada, vento) ou por um organismo vivo (por exemplo os músculos, energia biológica).
A etimologia da palavra tem origem no idioma grego, onde εργος (ergos) significa "trabalho".
Qualquer coisa que esteja a trabalhar - por exemplo, a mover outro objeto, a aquecê-lo ou a fazê-lo ser atravessado por uma corrente eléctrica - está a "gastar" energia (uma vez que ocorre uma "transferência", pois nenhuma energia é perdida, e sim transformada ou transferida a outro corpo). Portanto, qualquer coisa que esteja pronta a trabalhar possui energia. Enquanto o trabalho é realizado, ocorre uma transferência de energia.
O conceito de Energia é um dos conceitos essenciais da Física. Nascido no século XIX, pode ser encontrado em todas as disciplinas da Física (mecânica, termodinâmica, eletromagnetismo, mecânica quântica, etc.) assim como em outras disciplinas, particularmente na Química.

As partículas elementares da matéria, também chamadas de partículas subatômicas (português brasileiro) ou subatómicas (português europeu), são as menores porções de matéria-energia conhecidas.
O termo partícula deriva do latim particula e significa parte muito pequena, corpo diminuto ou corpúsculo.
Esses minúsculos elementos ou corpúsculos (se assim podemos nos permitir a definir) estão na base de tudo o que existe no Universo, sendo atualmente entendidos como estados da matéria e energia.

Em física, uma onda é uma perturbação oscilante de alguma grandeza física no espaço e periódica no tempo. A oscilação espacial é caracterizada pelo comprimento de onda e a periodicidade no tempo é medida pela frequência da onda, que é o inverso do seu período. Estas duas grandezas estão relacionadas pela velocidade de propagação da onda.
Fisicamente, uma onda é um pulso energético que se propaga através do espaço ou através de um meio (líquido, sólido ou gasoso). Segundo alguns estudiosos e até agora observado, nada impede que uma onda magnética se propague no vácuo ou através da matéria, como é o caso das ondas eletromagnéticas no vácuo ou dos neutrinos através da matéria, onde as partículas do meio oscilam à volta de um ponto médio mas não se deslocam. Exceto pela radiação eletromagnética, e provavelmente as ondas gravitacionais, que podem se propagar através do vácuo, as ondas existem em um meio cuja deformação é capaz de produzir forças de restauração através das quais elas viajam e podem transferir energia de um lugar para outro sem que qualquer das partículas do meio seja deslocada; isto é, a onda não transporta matéria. Há, entretanto, oscilações sempre associadas ao meio de propagação.
Uma onda pode ser longitudinal quando a oscilação ocorre na direcção da propagação, ou transversal quando a oscilação ocorre na direcção perpendicular à direcção de propagação da onda.
As ondas eletromagnéticas são uma combinação de um campo elétrico e de um campo magnético, propagam-se simultaneamente através do espaço transportando energia. A luz visível cobre apenas uma pequena parte do espectro de radiação eletromagnética possível. O conceito de ondas eletromagnéticas foi postulado por James Clerk Maxwell e confirmado experimentalmente por Heinrich Hertz. Uma de suas principais aplicações é a radiotransmissão.

Ficheiro:Solenoid.svg


O fotão (português europeu) ou fóton (português brasileiro) é a partícula elementar mediadora da força eletromagnética. O fóton também é o quantum da radiação eletromagnética (incluindo a luz). Fótons são bósons e possuem Spin igual a um. A troca de fótons (virtuais1) entre as partículas como os elétrons e os prótons é descrita pela eletrodinâmica quântica, a qual é a parte mais antiga do Modelo Padrão da física de partículas. Ele interage com os elétrons e núcleo atômico sendo responsável por muitas das propriedades da matéria, tais como a existência e estabilidades dos átomos, moléculas, e sólidos.
Em alguns aspectos um fóton atua como uma partícula, por exemplo quando registrado por um mecanismo sensível à luz como uma câmera. Em outras ocasiões, um fóton se comporta como uma onda, tal como quando passa através de uma lente ótica. De acordo com a conhecida dualidade partícula-onda da mecânica quântica, é natural para um fóton apresentar ambos aspectos na sua natureza, de acordo com as circunstâncias que se encontra. Normalmente, a luz é formada por um grande número de fótons, tendo a sua intensidade ou brilho ligada ao número deles. Para baixas intensidades, são necessários equipamentos muito sensíveis, como os usados em astronomia, para detectar fótons individuais.


Radiação corpuscular é a radiação constituída de um feixe de partículas elementares ou de núcleos atômicos, tais como elétrons, prótons, nêutrons, mésons π (pi), dêuterons e partículas alfa.
Esse tipo de radiação é originada a partir da dissociação de núcleos instáveis, que bombardeiam seu redor com 2 tipos básicos de partículas radiotivas corpusculares:
alfa: constituída por 2 prótons e 2 nêutrons, é uma partícula grande e, portanto, com baixíssimo poder de penetração e baixa velocidade, 1/10 da velocidade da luz. Uma folha de papel grosso é suficiente para impedir seu avanço.
beta: constituída por 1 elétron, é uma partícula pequena com velocidade equivalente a 9/10 da velocidade da luz. Possui um poder moderado de penetração. Uma parede fina de concreto consegue impedir seu deslocamento.
Além disso, partículas radiotivas emitem raios gama, que são um tipo de emissão puramente energética. Possuem velocidade igual à da luz e altíssimo poder de penetração, tendo sua trajetória desfalcada apenas por paredes de concreto muito espessas ou placas de materiais resistentes à radiação, como o chumbo.

Onda gravitacional é a onda que transmite energia por meio de deformações no espaço-tempo, ou seja, por meio do campo gravitacional. A teoria geral da relatividade prediz que massas aceleradas podem causar este fenômeno, que se propaga com a velocidade da luz. Até 2005 nenhuma radiação gravitacional foi satisfatóriamente observada. Bons candidatos para geradores destas ondas são corpos com grande massa acelerados: por exemplo, um sistema binário. O pacote de onda da gravidade seria o gráviton, também não observado.
Existem diversos experimentos ao redor do mundo que buscam evidências de ondas gravitacionais. Eles se baseiam em tentar detectar alterações da energia interna de corpos massivos a baixíssimas temperaturas confinados em sistemas amortecidos em laboratório. Essas alterações da energia interna seriam supostamente causadas por ondas gravitacionais oriundas de megaeventos no espaço, como o choque de estrelas.
Na Universidade de São Paulo, existe um detector de ondas gravitacionais, o Detector Mario Schenberg, que busca tais evidências.

Na Física, o Gráviton (português brasileiro) ou Gravitão (português europeu) é uma partícula elementar hipotética que seria a responsável pela transmissão da força da gravidade na maioria dos modelos da teoria quântica de campos.
A teoria postula que os grávitons sempre são atrativos (gravidade nunca repele), atuando além de qualquer distância (gravidade é universal) e vêm de um ilimitado número objetos. Portanto, se o gráviton existir, deve ser um bóson de spin par e igual a dois, e deve ter uma massa de repouso zero, segundo a Mecânica Quântica.

Radiação solar é a designação dada à energia radiante emitida pelo Sol, em particular aquela que é transmitida sob a forma de radiação electromagnética. Cerca de metade desta energia é emitida como luz visível na parte de frequência mais alta do espectro electromagnético e o restante na do infravermelho próximo e como radiação ultravioleta. A radiação solar fornece anualmente para a atmosfera terrestre 1,5 x 1018 kWh de energia, a qual, para além de suportar a vasta maioria das cadeias tróficas, sendo assim o verdadeiro sustentáculo da vida na Terra, é a principal responsável pela dinâmica da atmosfera terrestre e pelas características climáticas






                                                                               Sol





Densidade média do Fluxo Energético
A densidade média do fluxo energético proveniente da radiação solar é de 1367 W/m2, quando medida num plano perpendicular à direcção da propagação raios solares sito no topo da atmosfera terrestre. Aquele valor médio, designado por constante solar, foi adoptado como padrão pela Organização Meteorológica Mundial, isto apesar de flutuar umas tantas partes por mil de dia para dia e de variar com a constante alteração da distância da Terra ao Sol que resulta da elipticidade da órbita terrestre.do Sol (cromosfera e coroa solar), as quais apresentam pontos quentes e frios em constante mutação, para além das erupções cromosféricas e todos os outros fenómenos se traduzem na formação das manchas solares e na complexa dinâmica dos ciclos solares.
A quantidade total de energia recebida pela Terra é determinada pela projecção da sua superfície sobre um plano perpendicular à propagação da radiação (π R2, onde R é o raio da Terra). Como o planeta roda em torno do seu eixo, esta energia é distribuída, embora de forma desigual, sobre toda a sua superfície (4 π R2). Daí que a radiação solar média recebida sobre a terra, designada por insolação seja 342 W/m 2, valor correspondente a 1/4 da constante solar. O valor real recebido à superfície do planeta depende, para além dos factores astronómicos ditados pela latitude e pela época do ano (em função da posição da Terra ao longo da eclíptica), do estado de transparência da atmosfera sobre o lugar, em particular da nebulosidade.
A radiação solar é geralmente medida com um piranómetro ou com um piréliometro, ou mais recentemente com recurso a radiómetros capazes de registar a composição espectral e a energia recebida.




                                                                  Composição espectral
A radiação solar que atinge o topo da atmosfera terrestre provém da região da fotosfera solar, uma camada ténue de plasma com aproximadamente 300 km de espessura e com uma temperatura superficial da ordem de 5800 K.
Dada a dependência entre a composição espectral e a temperatura, traduzida na chamada lei de Planck, a composição espectral da luz solar corresponde aproximadamente àquela que seria de esperar na radiação de um corpo negro aquecido a cerca de 6000°C, embora apresentando uma clara assimetria resultante da maior absorção da radiação de comprimento de onda mais curto pelas camadas exteriores do Sol (veja figura à direita).
Em termos de comprimentos de onda, a radiação solar ocupa a faixa espectral de 100 nm a 3000 nm (3 μm), tendo uma máxima densidade espectral em torno dos 550 nm, comprimento de onda que corresponde sensivelmente à luz verde-amarelada.
A parte mais alongada do espectro (para a direita na imagem ao lado), tem a sua máxima intensidade na banda dos infravermelhos próximos, decaindo lentamente com a diminuição da frequência.
No que respeita à radiação mais energética, isto é de comprimento de onde mais curto, apesar da maior parte ser absorvida pela atmosfera, a radiação ultravioleta que atinge a superfície da Terra é ainda suficiente para provocar o bronzeado da pele (e as queimaduras solares a quem se exponha excessivamente).


Interação com a Terra
A energia solar incidente sobre a atmosfera e a superfície terrestre segue um de três destinos: ser reflectida, absorvida ou transmitida



A energia refletida e o albedo
Parte substancial da energia recebida sobre a superfície terrestre é reenviada para o espaço sob a forma de energia reflectida. As nuvens, as massas de gelo e neve e a própria superfície terrestre são razoáveis reflectores, reenviando para o espaço entre 30 e 40% da radiação recebida (enquanto a Lua reflecte sob a forma de luar apenas 7 a 12% da radiação incidente). A esta razão entre a radiação reflectida e incidente chama-se albedo.

 Absorção atmosférica

Conforme pode ser observado na imagem ao lado, entre a irradiância do Sol medida fora da atmosfera (linha azul) e a energia que atinge a superfície da Terra (linha amarela) existem diferenças substanciais resultantes da absorção atmosférica. Esta é selectiva, atingindo o seu máximo em torno dos pontos centrais dos espectros de absorção dos gases atmosféricos (indicados na imagem).
Repare-se a elevada absorção do ozónio (O3) atmosférica na banda dos ultravioleta e no efeito do vapor de água (H2O) e do dióxido de carbono (CO2), estes actuando essencialmente sobre os comprimentos de onda maiores.
Esta absorção selectiva está na origem do efeito de estufa, devido ao facto da radiação terrestre, resultante do retorno para o espaço da radiação solar por via do aquecimento da Terra, ser feita essencialmente na banda dos infravermelhos longos, radiação para a qual o CO2 tem grande capacidade de absorção.
A parcela absorvida dá origem, conforme o meio, aos processos de fotoconversão e termoconversão. Na fotoconversão, a energia absorvida é remetida, embora em geral com frequência diferente, sendo os novos fotões em geral sujeitos a novas absorções, num efeito em cascata que em geral termina numa termoconversão, a qual consiste na captura da energia e a sua conversão em calor, passando o material aquecido a emitir radiação com um espectro correspondente à sua temperatura, o que, no caso da Terra, corresponde à radiação infravermelha que forma o grosso da radiação terrestre.


 Transmissão

De toda a radiação solar que chega às camadas superiores da atmosfera, apenas uma fracção atinge a superfície terrestre, devido à reflexão e absorção dos raios solares pela atmosfera. Esta fracção que atinge o solo é constituída por uma componente directa (ou de feixe) e por uma componente difusa.
Para além das duas componentes atrás referidas, se a superfície receptora estiver inclinada com relação à horizontal, haverá uma terceira componente reflectida pelo ambiente circundante (nuvens, solo, vegetação, obstáculos, terreno).
Antes de atingir o solo, as características da radiação solar (intensidade, distribuição espectral e angular) são afectadas por interacções com a atmosfera devido aos efeitos de absorção e espalhamento. Essas modificações são dependentes da espessura da camada atmosférica atravessada (a qual depende do ângulo de incidência do Sol, sendo maior ao nascer e pôr-do-sol, daí a diferente coloração do céu nesses momentos). Este efeito é em geral medido por um coeficiente designado por Coeficiente de Massa de Ar (AM), o qual é complementado por um factor que reflete as condições atmosféricas e meteorológicas existente no momento



O equilíbrio energético no planeta
Equilibrio energetico.svg
Em média, da radiação solar incidente (sobre o sistema Terra/atmosfera):
* 19 % é perdida por absorção pelas moléculas de oxigénio e ozónio da radiação ultravioleta (de alta energia) na estratosfera (onde a temperatura cresce com a altitude);

* 6% é perdida por difusão da luz solar de menor comprimento de onda - azuis e violetas - (o que faz com que o céu seja azul);

* 24% é perdida por reflexão - 20% nas nuvens e 4% na superfície. (O albedo do planeta é de 30% (6% difusão+24% reflexão).

* 51% é absorvida pela superfície. (Note que os valores apresentados são valores médios. Por exemplo, nos pólos a reflexão da radiação solar incidente é geralmente maior do que 24% e nos oceanos menor do que 24%.)
A energia radiada pela superfície da Terra, na gama dos infravermelhos, corresponde a cerca de 117% do total de radiação solar incidente (sobre o sistema Terra/atmosfera). Dessa energia, apenas 6% é emitida directamente para o espaço (emissão terrestre) e 111% é absorvida pelos gases de estufa da atmosfera, que reemite depois, de volta para a superfície, uma energia correspondendo a 96% da radiação solar incidente. Finalmente, uma energia correspondendo a 64% da radiação solar incidente é emitida pela atmosfera para o espaço (emissão atmosférica).
Note que estes números traduzem um equilíbrio no sistema Terra/atmosfera: a radiação emitida para o espaço é igual à radiação solar incidente [24% (reflexão) + 6% (difusão) + 64% (emissão atmosférica) + 6% (emissão terrestre) = 100%].
No entanto, em média, a superfície absorve mais radiação da que emite e a atmosfera radia mais energia do que a que absorve. Em ambos os casos, o excedente de energia é de cerca de 30% da energia da radiação solar incidente no sistema Terra/atmosfera:
superfície - energia absorvida: 147% (51% do Sol + 96% da atmosfera); energia emitida: 117%
atmosfera - energia absorvida: 130% (19% ultravioleta. + 111% emissão terrestre); emitida: 160% (64% para o espaço + 96% para a superfície)
A partir desta constatação pareceria que a superfície deveria ir aquecendo e a atmosfera arrefecendo. Isso não acontece porque existem outros meios de transferência de energia da superfície para a atmosfera que representam, no seu conjunto, uma transferência líquida de 30% do total de radiação solar incidente que equilibra o orçamento de energia no planeta.
O ar quente que se eleva na atmosfera a partir da superfície transfere calor para a atmosfera. Essa transferência de calor (o fluxo de calor sensível) corresponde a um valor de energia que é 7% do total de radiação solar incidente.
A evaporação da água na superfície do planeta corresponde a uma extracção de calor que acaba por ser libertado durante o processo de condensação na atmosfera (que dá origem à formação das nuvens). Essa transferência de calor (o fluxo de calor latente) corresponde a um valor de energia que é 23% do total de radiação solar incidente.

O Sol (do latim sol, solis[11]) é a estrela central do Sistema Solar. Todos os outros corpos do Sistema Solar, como planetas, planetas anões, asteroides, cometas e poeira, bem como todos os satélites associados a estes corpos, giram ao seu redor. Responsável por 99,86% da massa do Sistema Solar, o Sol possui uma massa 332 900 vezes maior que a da Terra, e um volume 1 300 000 vezes maior que o do nosso planeta.[12]
A distância da Terra ao Sol é de cerca de 150 milhões de quilômetros, ou 1 unidade astronômica (UA). Na verdade, esta distância varia com o ano, de um mínimo de 147,1 milhões de quilômetros (0,9833 UA) no perélio (ou periélio) a um máximo de 152,1 milhões de quilômetros (1,017 UA) no afélio (em torno de 4 de julho).[13] A luz solar demora aproximadamente 8 minutos e 18 segundos para chegar à Terra. Energia do Sol na forma de luz solar é armazenada em glicose por organismos vivos através da fotossíntese, processo do qual, direta ou indiretamente, dependem todos os seres vivos que habitam nosso planeta.[14] A energia do Sol também é responsável pelos fenômenos meteorológicos e o clima na Terra.[15]
É composto primariamente de hidrogênio (74% de sua massa, ou 92% de seu volume) e hélio (24% da massa solar, 7% do volume solar), com traços de outros elementos, incluindo ferro, níquel, oxigênio, silício, enxofre, magnésio, néon, cálcio e crômio.[16]
Possui a classe espectral de G2V: G2 indica que a estrela possui uma temperatura de superfície de aproximadamente 5 780 K, o que lhe confere uma cor branca (apesar de ser visto como amarelo no céu terrestre, o que se deve à dispersão dos raios na atmosfera);[17] O V (5 em números romanos) na classe espectral indica que o Sol, como a maioria das estrelas, faz parte da sequência principal. Isto significa que o astro gera sua energia através da fusão de núcleos de hidrogênio para a formação de hélio. Existem mais de 100 milhões de estrelas da classe G2 na Via Láctea. Considerado anteriormente uma estrela pequena, acredita-se atualmente que o Sol seja mais brilhante do que 85% das estrelas da Via Láctea, sendo a maioria dessas anãs vermelhas.[18][19] O espectro do Sol contém linhas espectrais de metais ionizados e neutros, bem como linhas de hidrogênio muito fracas.
A coroa solar expande-se continuamente no espaço, criando o vento solar, uma corrente de partículas carregadas que estende-se até a heliopausa, a cerca de 100 UA do Sol. A bolha no meio interestelar formada pelo vento solar, a heliosfera, é a maior estrutura contínua do Sistema Solar.[20][21]
O Sol orbita em torno do centro da Via Láctea, atravessando no momento a Nuvem Interestelar Local de gás de alta temperatura, no interior do Braço de Órion da Via Láctea, entre os braços maiores Perseus e Sagitário. Das 50 estrelas mais próximas do Sistema Solar, num raio de até 17 anos-luz da Terra, o Sol é a quarta maior em massa.[22] Diferentes valores de magnitude absoluta foram dados para o Sol, como, por exemplo, 4,85,[23] e 4,81.[24] O Sol orbita o centro da Via Láctea a uma distância de cerca de 24 a 26 mil anos-luz do centro galáctico, movendo-se geralmente na direção de Cygnus e completando uma órbita entre 225 a 250 milhões de anos (um ano galáctico). A estimativa mais recente e precisa da velocidade orbital do sol é da ordem de 251 km/s.[25][26]
Visto que a Via Láctea move-se na direção da constelação Hidra, com uma velocidade de 550 km/s, a velocidade do Sol relativa à radiação cósmica de fundo é de 370 km/






Quando uma partícula carregada eletricamente atravessa um meio isolante a uma velocidade superior à da luz neste meio, ela emite radiação eletromagnética que pode ser na faixa visível. A esta radiação dá-se o nome de radiação de Tcherenkov (ou efeito Tchrenkov). A luminosidade azul, característica de reatores nucleares, deve-se à radiação de Tcherenkov. O nome é em homenagem ao cientista soviético Pavel Alekseyevich Cherenkov, vencedor do Prêmio Nobel de Física de 1958, que primeiro caracterizou rigorosamente o efeito.
Ocorre uma onda de choque semelhante à produzida por um avião supersônico ao quebrar a barreira do som. Esta onda de choque óptica leva a emissão de radiação eletromagnética. São isolantes os meios nos quais esta radiação pode aparecer. Este tipo de efeito é usado para a detecção de partículas com altas energias.

 Origem física

Embora, de acordo com a teoria da relatividade restrita, a velocidade da luz no vácuo não possa ser ultrapassada, a velocidade da luz em um meio material pode ser bem menor que aquela do vácuo. Assim em um meio material é possível uma partícula eletricamente carregada (como um elétron ou um próton) se deslocar com velocidade superior à da luz naquele meio (V > c/n).


Características


Intuitivamente, a intensidade total da radiação de Cherenkov é proporcional a velocidade da carga excitada e o número de tais partículas. Ao contrário da fluorescência ou emissão espectral que possuem picos espectrais característicos, a radiação Tcherenkov é contínua. A intensidade relativa de uma freqüência é proporcional a freqüência. Isto é, altas freqüências são mais intensas na radiação Tcherenkov. Por isso a parte visível da radiação de Tcherenkov é observada como um azul brilhante. Na verdade, a maioria da radiação Tcherenkov está no espectro ultravioleta - isto é, apenas com partículas carregadas suficientemente aceleradas que a radiação se torna visível; o pico de sensibilidade dos olhos humanos dá-se no verde, e é muito baixa a porção violeta do espectro.
O efeito Tcherenkov é de grande utilidade nos detectores de partículas onde a radiação citada é utilizada como traçador. Particularmente, nos detectores de neutrinos de água pesada como o Super-Kamiokande.
Ficheiro:TrigaReactorCore.jpeg
A radioatividade (AO 1945: radioactividade) (também chamado no Brasil de radiatividade) é um fenômeno natural ou artificial, pelo qual algumas substâncias ou elementos químicos, chamados radioativos, são capazes de emitir radiações, as quais têm a propriedade de impressionar placas fotográficas, ionizar gases, produzir fluorescência, atravessar corpos opacos à luz ordinária, etc. As radiações emitidas pelas substâncias radioativas são principalmente partículas alfa, partículas beta e raios gama. A radioatividade é uma forma de energia nuclear, usada em medicina (radioterapia), e consiste no fato de alguns átomos como os do urânio, rádio e tório serem “instáveis”, perdendo constantemente partículas alfa, beta e gama (raios-X). O urânio, por exemplo, tem 92 prótons, porém através dos séculos vai perdendo-os na forma de radiações, até terminar em chumbo, com 82 prótons estáveis.
A radioatividade pode ser:
  • Radioatividade natural ou espontânea: É a que se manifesta nos elementos radioativos e nos isótopos que se encontram na natureza e poluem o meio ambiente.
  • Radioatividade artificial ou induzida: É aquela que é provocada por transformações nucleares artificiais.
Ficheiro:Dangclass7.png


Radiação ionizante é a radiação que possui energia suficiente para ionizar átomos e moléculas.
Pode danificar nossas células e afetar o material genético (DNA), causando doenças graves (por exemplo: câncer), levando até a morte. A radiação eletromagnética ultravioleta (excluindo a faixa inicial da radiação ultravioleta) ou mais energética é ionizante. Partículas como os elétrons e os prótons que possuam altas energias também são ionizantes. São exemplos de radiação ionizante as partículas alfa, partículas beta (elétrons e protons), os raios gama, raios-x e neutrons.


Radiação de fundo
Os níveis naturais de radiação constituem a chamada radiação de fundo. Sua existência se deve à presença de radionúclideos, tais como 40K, 238U e 232Th, na atmosfera, hidrosfera e litosfera, e às ondas cósmicas, que atingem a Terra vindas do espaço. Uma porção menos importante da radiação de fundo é devida a radionuclídeos de meia-vida curta formados nas camadas superiores da atmosfera na interação de gases atmosféricos com ondas cósmicas. (Pivovarov & Mikhalev 2004). Diferentes tipos de rocha emitem diferentes intensidades de radiação, e alguns radionuclídeos, em especial o 40K, são encontrados em organismos vivos. Segundo Pivovarov & Mikhalev (2004), a ação antrópica pode modificar essa radiação de três maneiras principais: redistribuindo radionuclídeos artificiais; liberando no ambiente radionuclídeos artificais recentes, resultantes da produção de energia por fissão nuclear; e pela produção, uso e descarte de radionuclídeos, artificais e naturais, na ciência, medicina e indústria.

Uso da radiação na medicina


Radiações podem ser usadas para pesquisa, diagnóstico e tratamento na medicina estando todos esses usos sujeitos às regulações governamentais. Nos EUA, esses usos constituem a principal fonte de exposição humana a radiação (US-EPA 2007). Na pesquisa, normalmente usam-se pequenas doses de radiação, na busca de novas formas de diagnosticar e tratar doenças (Health Physics Society 2001). Um dos usos mais comuns, para diagnóstico, são os raios-X; na Rússia 50% da população está sujeita a eles (Pivovarov & Mikhalev 2004), e nos EUA raios-X são utilizados em mais de metade dos diagnósticos de ferimentos físicos (US-EPA 2007). Também se destacam a tomografia computadorizada (CT scan) e o uso de radionuclídeos para formação de imagens na medicina nuclear (Health Physics Society 2001). Quando usada para tratamento, o principal destaque é o uso da radioterapia para combate ao câncer; neste caso, os radionuclídeos mais usados são: 131I, 32P, 89Sr e 153Sm; 60Co é usado externamente, como um potente emissor Gamma (Health Physics Society 2001). Caso medidas adequadas de segurança sejam adotadas, a contaminação por radionuclídeos em hospitais deve ser mínima. No entanto, Ho & Shearer (1992), ao analisarem a contaminação em sanitários próximos aos laboratórios que utilizam radiação, recomendaram que sejam designados sanitários especiais a pacientes realizando tratamento radioativo, presumivelmente para evitar contaminação dos outros pacientes.

As radiações de freqüência igual ou menor que a da luz (abaixo, portanto, de ~8x1014Hz (luz violeta)) são chamadas de radiações não ionizantes. Geralmente a faixa de freqüência mais baixa do UV (UV-A ou UV próximo) também é considerada não ionizante ainda que ela e até mesmo a luz pode ionizar alguns átomos.
Elas não alteram o átomo mas ainda assim, algumas, podem causar problemas de saúde. Está demonstrado, por exemplo, que as microondas podem causar, além de queimaduras, danos ao sistema reprodutor. Existem também estudos sobre danos causados pelas radiações dos monitores de computador CRT (Cathode Ray Tube, Tubo de Raios Catódicos) por radiações emitidas além da radiação X, celulares, radiofreqüências, e até da rede de distribuição de 60Hz[1].

 Mecanismo de ação no corpo humano

Um longo período sobre o efeito de uma radiação pode causar problemas. A radiação não ionizante é absorvida por várias partes celulares, mas o maior dano ocorre nos ácidos nucléicos, que sofrem alteração de suas pirimidas. Formam-se dímeros de pirimida e se estes permanecem (não ocorre reativação), a réplica do DNA pode ser inibida ou podem ocorrer mutações
(fonte:winkipédia.org)


Radiações são ondas eletromagnéticas ou partículas que se propagam com uma determinada velocidade. Contêm energia, carga eléctrica e magnética. Podem ser geradas por fontes naturais ou por dispositivos construídos pelo homem. Possuem energia variável desde valores pequenos até muito elevados.
As radiações electromagnéticas mais conhecidas são: luz, microondas, ondas de rádio, radar, laser, raios X e radiação gama. As radiações sob a forma de partículas, com massa, carga eléctrica, carga magnética mais comuns são os feixes de elétrons, os feixes de prótrons, radiação beta, radiação alfa.









  • Tipos de Radiação
    Dependendo da quantidade de energia, uma radiação pode ser descrita como não ionizante ou ionizante.
    Radiações não ionizante possuem relativamente baixa energia. De fato, radiações não ionizantes estão sempre a nossa volta. Ondas eletromagnéticas como a luz, calor e ondas de rádio são formas comuns de radiações não ionizantes. Sem radiações não ionizantes, nós não poderíamos apreciar um programa de TV em nossos lares ou cozinhar em nosso forno de microondas.
    Altos níveis de energia, radiações ionizantes, são originadas do núcleo de átomos, podem alterar o estado físico de um átomo e causar a perda de elétrons, tornando-os eletricamente carregados. Este processo chama-se "ionização".
    Um átomo pode se tornar ionizado quando a radiação colide com um de seus elétrons. Se essa colisão ocorrer com muita violência, o elétron pode ser arrancado do átomo. Após a perda do elétron, o átomo deixa de ser neutro, pois com um elétron a menos, o número de prótons é maior. O átomo torna-se um "íon positivo".







  • Estabilidade do Núcleo Atômico

    A tendência dos isótopos dos núcleos atômicos é atingir a estabilidade. Se um isótopo estiver numa configuração instável, com muita energia ou com muitos nêutrons, por exemplo, ele emitirá radiação para atingir um estado estável. Um átomo pode liberar energia e se estabilizar por meio de uma das seguintes formas:
    *  emissão de partículas do seu núcleo;
    *  emissão de fótons de alta freqüência.
    *  O processo no qual um átomo espontaneamente libera energia de seu núcleo é chamado de "decaimento radioativo".
    *  Quando algo decai na natureza, como a morte de uma planta, ocorrem trocas de um estado complexo (a planta) para um estado simples (o solo). A idéia é a mesma para um átomo instável. Por emissão de partículas ou de energia do núcleo, um átomo instável troca, ou decai, para uma forma mais simples. Por exemplo, um isótopo radioativo de urânio, o 238, decai até se tornar chumbo 206. Chumbo 206 é um isótopo estável, com um núcleo estável. Urânio instável pode, eventualmente, se tornar um isótopo estável de chumbo.








  • Radiação Ionizante

    Energia e partículas emitidas de núcleos instáveis são capazes de causar ionização. Quando um núcleo instável emite partículas, as partículas são, tipicamente, na forma de partículas alfa, partículas beta ou nêutrons. No caso da emissão de energia, a emissão se faz por uma forma de onda eletromagnética muito semelhante aos raios-x : os raios gama.
    Radiações Ionizantes Alfa (a), Beta (ß) e Gama (?)









  • Radiação Alfa (a)

    As partículas Alfa são constituídas por 2 prótons e 2 nêutrons, isto é, o núcleo de átomo de hélio (He). Quando o núcleo as emite, perde 2 prótons e 2 nêutrons.
    Sobre as emissões alfa, foi enunciada por Soddy, em 1911, a chamada primeira lei da Radioatividade:
    Quando um radionuclídeo emite uma partícula Alfa, seu número de massa diminui 4 unidades e, seu número atômico, diminui 2 unidades.
    X -----> alfa(2p e 2n) + Y(sem 2p e 2n)

    Ao perder 2 prótons o radionuclídeo X se transforma no radionuclídeo Y com número atômico igual a (Y = X - 2)
    As partículas Alfa, por terem massa e carga elétrica relativamente maior, podem ser facilmente detidas, até mesmo por uma folha de papel (veja a figura a seguir); elas em geral não conseguem ultrapassar as camadas externas de células mortas da pele de uma pessoa, sendo assim praticamente inofensivas. Entretanto podem ocasionalmente, penetrar no organismo através de um ferimento ou por aspiração, provocando, nesse caso lesões graves. Têm baixa velocidade comparada a velocidade da luz (20 000 km/s).










  • Radiação Beta (ß)

    As partículas Beta são elétrons emitidos pelo núcleo de um átomo instável. Em núcleos instáveis betaemissores, um nêutron pode se decompor em um próton, um elétron e um antineutrino permanece no núcleo, um elétron (partícula Beta) e um antineutrino são emitidos.
    Assim, ao emitir uma partícula Beta, o núcleo tem a diminuição de um nêutron e o aumento de um próton. Desse modo, o número de massa permanece constante.
    A segunda lei da radioatividade, enunciada por Soddy, Fajjans e Russel, em 1913, diz:
    Quando um radionuclídeo emite uma partícula beta, seu número de massa permanece constante e seu número atômico aumenta 1 unidade X -----> beta(1e) + antineutrino + Y(com 1p a mais)

    Ao ganhar 1 próton o radionuclídeo X se transforma no radionuclídeo Y com número atômico igual a (Y = X + 1)
    As partículas Beta são capazes de penetrar cerca de um centímetro nos tecidos(veja a figura a seguir), ocasionando danos à pele, mas não aos órgãos internos, a não ser que sejam ingeridas ou aspiradas. Têm alta velocidade, aproximadamente 270 000 km/s.











  • Radiação Gama (?)
    Ao contrário das radiações Alfa e Beta, que são constituídas por partículas, a radiação gama é formada por ondas eletromagnéticas emitidas por núcleos instáveis logo em seguida à emissão de uma partícula Alfa ou Beta.
    O Césio-137 ao emitir uma partícula Beta, seus núcleos se transformam em Bário-137. No entanto, pode acontecer de, mesmo com a emissão, o núcleo resultante não eliminar toda a energia de que precisaria para se estabilizar. A emissão de uma onda eletromagnética (radiação gama) ajuda um núcleo instável a se estabilizar.
    É importante dizer que, das várias ondas eletromagnéticas (radiação gama, raios-X, microondas, luz visível, etc), apenas os raios gama são emitidos pelos núcleos atômicos.
    As radiações Alfa, Beta e Gama possuem diferentes poderes de penetração, isto é, diferentes capacidades para atravessar os materiais.
    Assim como os raios-X os raios gama são extremamente penetrantes, sendo detido somente por uma parede de concreto ou metal (veja a figura a seguir). Têm altíssima velocidade que se igual à velocidade da luz (300 000 km/s).









  • Raios-X








  • Os raios-X que não vêm do centro dos átomos, como os raios Gama. Para obter-se raios-X, uma máquina acelera elétrons e os faz colidir contra uma placa de chumbo, ou outro material. Na colisão, os elétrons perdem a energia cinética, ocorrendo uma transformação em calor (quase a totalidade) e um pouco de raios-X.
    Estes raios interessantes atravessam corpos que, para a luz habitual, são opacos. O expoente de absorção deles é proporcional à densidade da substância. Por isso, com o auxílio dos raios X é possível obter uma fotografia dos órgãos internos do homem. Nestas fotografias, distinguem-se bem os ossos do esqueleto e detectam-se diferentes deformações dos tecidos brandos.
    A grande capacidade de penetração dos raios X e as suas outras particularidades estão ligadas ao fato de eles terem um comprimento de onda muito pequeno.






  • Aplicações

    A radiação ionizante tornou-se há muitos anos parte integrante da vida do homem. Sua aplicação se dá na área da medicina até às armas bélicas, contudo, sua utilidade é indiscutível. Atualmente, por exemplo a sua utilização em alguns exames de diagnóstico médico, através da aplicação controlada da radiação ionizante (a radiografia é mais comum), é uma metodologia de extremo auxílio. Porém os efeitos da radiação não podem ser considerados inócuos, a sua interação com os seres vivos pode levar a teratogenias e até a morte. Os riscos e os benefícios devem ser ponderados. A radiação é um risco e deve ser usada de acordo com os seus benefícios.

      a)Saúde










  • Radioterapia
    Consiste na utilização da radiação gama, raios X ou feixes de eléctrons para o tratamento de tumores, eliminando células cancerígenas e impedindo o seu crescimento. O tratamento consiste na aplicação programada de doses elevadas de radiação, com a finalidade de atingir as células cancerígenas, causando o menor dano possível aos tecidos sãos intermediários ou adjacentes.












  • Braquiterapia
    Trata-se de radioterapia localizada para tipos específicos de tumores e em locais específicos do corpo humano. Para isso são utilizadas fontes radioativas emissoras de radiação gama de baixa e média energia, encapsuladas em aço inox ou em platina, com atividade da ordem das dezenas de Curies. A principal vantagem é devido à proximidade da fonte radioativa afeta mais precisamente as células cancerígenas e danifica menos os tecidos e órgãos próximos.













  • Aplicadores
    São fontes radioativas de emissão beta distribuídas numa superfície , cuja geometria depende do objetivo do aplicador. Muito usado em aplicadores dermatológicos e oftalmológicos. O princípio de operação é a aceleração do processo de cicatrização de tecidos submetidos a cirurgias, evitando sangramentos e quelóides, de modo semelhante a uma cauterização superficial. A atividade das fontes radioativas é baixa e não oferece risco de acidente significativo sob o ponto de vista radiológico. O importante é o controle do tempo de aplicação no tratamento, a manutenção da sua integridade física e armazenamento adequado dos aplicadores.











  • Radioisótopos
    Existem terapias medicamentosas que contêm radiosiótopos que são administrados ao paciente por meio de ingestão ou injeção, com a garantia da sua deposição preferencial em determinado órgão ou tecido do corpo humano. Por exemplo, isótopos de iodo para o tratamento do cancro na tiróide.

      b)Diagnóstico:










  • Radiografia
    A radiografia é uma imagem obtida, por um feixe de raios X ou raios gama que atravessa a região de estudo e interage com uma emulsão fotográfica ou tela fluorescente. Existe uma grande variedade de tipos, tamanhos e técnicas radiográficas. As doses absorvidas de radiação dependem do tipo de radiografia. Como existe a acumulação da radiação ionizante não se devem tirar radiografias sem necessidade e, principalmente, com equipamentos fora dos padrões de operação. O risco de dano é maior para o operador, que executa rotineiramente muitas radiografias por dia. Para evitar exposição desnecessária, deve-se ficar o mais distante possível, no momento do disparo do feixe ou protegido por um biombo com blindagem de chumbo.











  • Tomografia
    O princípio da tomografia consiste em ligar um tubo de raios X a um filme radiográfico por um braço rígido que gira ao redor de um determinado ponto, situado num plano paralelo à película. Assim, durante a rotação do braço, produz-se a translação simultânea do foco (alvo) e do filme. Obtém-se imagens de planos de cortes sucessivos, como se observássemos fatias seccionadas, por exemplo, do cérebro. Não apresenta riscos de acidente pois é operada por electricidade, e o nível de exposição à radiação é similar. Não se devem realizar exames tomográficos sem necessidade, devido à acumulação de dose de radiação.












  • Mamografia
    Atualmente a mamografia é um instrumento que auxilia na prevenção e na redução de mortes por câncer de mama. Como o tecido da mama é difícil de ser examinado com o uso de radiação penetrante, devido às pequenas diferenças de densidade e textura de seus componentes como o tecido adiposo e fibroglandular, a mamografia possibilita somente suspeitar e não diagnosticar um tumor maligno. O diagnóstico é complementado pelo uso da biópsia e ultrasonografia. Com estas técnicas, permite-se a detecção precoce em pacientes assintomáticas e imagens de melhor definição em pacientes sintomáticas. A imagem é obtida com o uso de um feixe de raios X de baixa energia, produzidos em tubos especiais, após a mama ser comprimida entre duas placas. O risco associado à exposição à radiação é mínimo, principalmente quando comparado com o benefício obtido.







  • Mapeamento com radiofármacos
    O uso de marcadores é comum. O marcador radioactivo tem o objetivo de, como o nome mesmo diz, marcar moléculas de substâncias que se incorporam ou são metabolizadas pelo organismo do homem, de uma planta ou animal. Por exemplo, o iodo-131 é usado para seguir o comportamento do iodo -127, estável, no percurso de uma reacção química in vitro ou no organismo. Nestes exames, a irradiação da pessoa é inevitável, mas deve-se ter em atenção para que esta seja a menor possível.






  • Como minimizar os efeitos da radiação ionizante

    A minimização dos efeitos da radiação nos trabalhadores inicia pela avaliação de risco, o correto planejamento das atividades a serem desenvolvidas, utilização de instalações e de práticas corretas, de tal forma a diminuir a magnitude das doses individuais, o número de pessoas expostas e a probabilidade de exposições acidentais.
    Os equipamentos de proteção (EPC e EPI) devem ser utilizados por todos os trabalhadores, além de ser observado a otimização desta proteção pelo elaboração e execução correta de projeto de instalações laboratoriais, na escolha adequada dos equipamentos e na execução correta dos procedimentos de trabalho.
    Por outro lado o controle das doses nos trabalhadores deve considerar três fatores:
    1. Tempo:
    A dose recebida é proporcional ao tempo de exposição e à velocidade da dose D = t x velocidade da dose
    2.Distância:
    A intensidade da radiação decresce com o quadrado da distância D1/D2 = (d1/d2)2
    3.Blindagem:
    A espessura da blindagem depende do tipo de radiação, da atividade da fonte e da velocidade de dose aceitável após a blindagem. Para a protecção do trabalhador os comandos do equipamentos devem ter blindagem, assegurando que o técnico possa ver e manter o contacto com o paciente no decorrer do exame. As próprias salas devem ter blindagem, por forma a assegurar e garantir a segurança radiológica tanto do técnico como do pessoal circunvizinho à sala. Estas protecções devem ter espessura suficiente para garantir a proteção contra a radiação primária e a radiação difundida que pode atingir as paredes da sala.
    No cálculo das blindagens leva-se em conta:
    *  a energia da radiação produzida;
    *  a quantidade de radiação produzida por determinado período (carga de trabalho);
    *  grau de ocupação ou frequência do ponto de interesse;
    *  material a ser usado como blindagem.
    *  Para a blindagem de raios X e Gama usa-se geralmente o chumbo. Contudo outros materiais podem ser utilizados embora a espessura necessária para se obter a mesma atenuação que com o chumbo seja muito maior.

    A garantia de que as condições de trabalho é adequada do ponto de vista da proteção pode ser obtida através do levantamento radiométrico da instalação. Esta medida tem por objetivo verificar se durante a operação, a instalação apresenta níveis de segurança adequados aos trabalhadores.








  • Controle à Exposição

      Monitorização

    Este processo tem como objetivo garantir a menor exposição possível aos trabalhadores e garantir que os limites de dose não são superados.

      Tipos de Monitorização:

    *  Pessoal - procura estimar a dose recebida pelo trabalhador durante as suas atividades envolvendo radiação ionizante. As doses equivalentes são determinadas pela utilização de um ou vários dosímetros que devem ser usados na posição que forneça uma medida representativa da exposição nas partes do corpo expostos à radiação. No caso do trabalhador usar diferentes tipos de radiação então diferentes tipos de dosímetros devem ser utilizados:
    *  Monitorização da radiação externa;
    *  Monitorização da contaminação interna
    *  De área - Tem por objetivo a avaliação das condições de trabalho e verificar se há presença radioativa. Os resultados das medidas efetuadas com os monitores da área devem ser comparados com os limites primários ou derivados, a fim de se tomar ações para garantir a proteção necessária.








  • Tipos de Dosímetros

    Diversos métodos ou sistemas foram desenvolvidos a fim de possibilitar a determinação da dose de radiação. O objetivo é o de quantificar a energia absorvida, a fim de proporcionar um conhecimento mais profundo dos efeitos da radiação ionizante sobre a matéria.






    Figura - Exemplos de dosímetros

    Os requisitos são:
    *  a resposta do dosímetro deve ser linear com a dose absorvida;
    *  o aparelho deve ser de alta sensibilidade, por forma a medir doses baixas;
    *  deve apresentar amplo intervalo de resposta;
    *  a resposta deve ser independente da velocidade da dose;
    *deve possuir estabilidade da resposta ao longo do tempo;
    *De uma forma geral podemos classificar os dosímetros em: de leitura direta e de leitura indireta, os primeiros fornecem ao utilizador a dose ou velocidade da dose em qual quer instante, os segundos necessitam de um procedimento para a sua leitura.

    Para finalizar devemos lembrar de alguns requisitos que compõem os procedimentos de segurança:
    *  delimitação de zonas e áreas (controladas e de vigilância),
    *  selagem
    *  limitar o acesso
    *  utilizar equipamentos de proteção individual
    *  proibir a comida e a bebida, o fumar, mascar chicletes, manusear lentes de contato, a aplicação de cosméticos e ou produtos de higiene pessoal ou armazenar alimentos para consumo nos locais de uso de radiação e áreas adjacentes.
    *  lavar as mãos:
    -  antes e após a manuseio de materiais radioativos, após a remoção das luvas e antes de saírem do laboratório.
    -  antes e após o uso de luvas.
    -  antes e depois do contato físico com pacientes.
    -  antes de comer, beber, manusear alimentos e fumar.
    -  depois de usar o toalete, coçar o nariz, cobrir a boca para espirrar, pentear os cabelos.
    -  mãos e antebraços devem ser lavados cuidadosamente (o uso de escovas deverá ser feito com atenção).
    -manter líquidos anti-sépticos para uso, caso não exista lavatório no local.
    -  evitar o uso de calçados que deixem os artelhos à vista.
    -  não usar anéis, pulseiras, relógios e cordões longos, durante as atividades laboratoriais.
    -  não colocar objetos na boca.
    -  não utilizar a pia do laboratório como lavatório.
    -  usar roupa de proteção durante o trabalho. Essas peças de vestuário não devem ser usadas em outros espaços que não sejam do laboratório (escritório, biblioteca, salas de estar e refeitório).
    -  afixar o símbolo internacional de "Radioatividade" na entrada do laboratório. Neste alerta deve constar o nome e número do telefone do pesquisador responsável.
    -  presença de kits de primeiros socorros, na área de apoio ao laboratório.
    -  o responsável pelo laboratório precisa assegurar a capacitação da equipe em relação às medidas de segurança e emergência
    -providenciar o exame médico periódicos;
    -adoção de cuidados após a exposição à radiação.


    1. Referências Bibliográficas

    Ramos, J. Radioatividade.Acessado em 16.12.03. Disponível em: http://atomico.no.sapo.pt/index.html
    Portela, F.; Lichtenthäler Filho, R. Energia Nuclear. Acessado em 10.12.03. Disponível em: http//www.nuclear2000.hpg.com.br
    Alvarenga, A. V. C. R. Radioatividade. Acessado em 10.12.03. Disponível em: http://br.geocities.com/radioativa_br/
    Cardoso, Eliezer de Moura, Aplicações da Energia Nuclear- Apostila educativa, Comissão Nacional de Energia Nuclear, 1999
    Cardoso, Eliezer de Moura, Radioatividade - Apostila educativa, Comissão Nacional de Energia Nuclear, 19














  •  




    Radiação Alfa é uma partícula formada por um átomo de hélio com carga positiva. A distância que uma partícula percorre antes de parar é chamada alcance. Num dado meio, partículas alfa de igual energia têm o mesmo alcance. O alcance das partículas alfa é muito pequeno, o que faz que elas sejam facilmente blindadas. Uma folha fina de alumínio barra completamente um feixe de partículas de 5MeV. A inalação ou ingestão de partículas alfa é muito perigosa.
    Radiação Beta é também uma partícula, de carga negativa, o elétron. Sua constituição é feita por partículas beta que são emitidas pela maioria dos nuclídeos radioativos naturais ou artificiais e tem maior penetração que as partículas alfa. O 32 P dá uma radiação beta até 1,7 MeV com uma penetração média de 2 a 3 mm na pele, e alcança, em pequena proporção, 8 mm. Se o emissor beta é ingerido, como acontece nos casos de diagnóstico e terapêutica, os efeitos são muito mais extensos.
    Radiação Gama é uma onda eletromagnética. As substâncias radiativas emitem continuamente calor e têm a capacidade de ionizar o ar e torná-lo condutor de corrente elétrica. São penetrantes e ao atravessarem uma substância chocam-se com suas moléculas. A radiação gama tem seu poder de penetração muito grande. Sua emissão é obtida pela maioria, não totalidade, dos nuclídeos radioativos habitualmente empregados. Quando a fonte de material radioativo for beta ou gama é necessário colocação de uma barreira entre o operador e fonte.






      
      

        Radiação eletromagnética invisível, emitida por corpos aquecidos. Pode ser detectada por meio de células fotoelétricas, possui muitas aplicações. Desde o aquecimento de interiores até o tratamento de doenças de pele e dos músculos. Para produzir o infravermelho, em geral empregam-se lâmpadas de vapor de mercúrio a de filamento longo incandescente.
        A radiação infravermelha é usada para obter fotos de objetos distantes encobertos pela atmosfera, também muito utilizada por astrônomos para observar estrelas e nebulosas que são invisíveis com luz normal. Uma outra utilidade deste tipo de radiação é o uso nas fotografias infravermelhas, que são muito precisas. O infravermelho foi muito utilizado na II Guerra Mundial.
        Alguns exemplos de Infra-vermelho.




    Esq.: radiografia da flor da columbina. Dir.: registro em filme do calor deixado no chão por um cadáver,


        Produzida por descargas elétricas em tubos de gás. Cerca de 5% da energia mandada pelo Sol consiste nesta radiação, mas a maior parte da que incide sobre a Terra é filtrada pelo O e pelo ozônio na atmosfera, estes protegem a vida na Terra. Esta radiação é impregnada principalmente em tubos fluorescentes, mas também em aplicações médicas que incluem lâmpadas germicidas, o tratamento do Raquitismo e doenças de pele, enriquecimento de leite e ovos com vitamina D.
        É dividida em três classes: UV-A, UV-B e UV-C. As ondas de menor período são as mais nocivas aos organismos vivos. A UV-A é a mais perigosa e tem período entre 4000A (ângstrons) e 3150A. UV-B tem período entre 3150A e 2800A e causa queimaduras na pele.






        Toda vida, em nosso planeta, está exposta à radiação cósmica* e à radiação proveniente de elementos naturais radioativos existentes na crosta terrestre como potássio, césio etc. A intensidade dessa radiação tem permanecido constante por milhares de anos e se chama radiação natural ou radiação de fundo, e provém de muitas fontes.
        Cerca de 30% a 40% dessa radiação se deve aos raios cósmicos. Alguns materiais radioativos -- como potássio-40, carbono-14, urânio, tório etc. – estão presentes em quantidades variáveis nos alimentos.
    Uma quantidade raoável de radiação vem do solo e de materiais de construção. Assim, pois, a radiação de fundo pode variar de local para local.
        O valor médio da radiação de fundo em locais habitados é de 1,25 milisievert (mSv) ao ano.






        São feixes de partículas produzidos por um eletrodo negativo (cátodo) de um tubo contendo gás comprimido. São resultado da ionização do gás e provocam luminosidade. Os raios catódicos são identificados no final do século passado por Willian Crookes. O tubo de raios catódicos é usado em osciloscópios e televisões.










        São capazes de atravessar o corpo humano, durante a travessia, o feixe sofre um certo enfraquecimento. Ele provoca a iluminação de certos sais minerais.
        O uso do raio X tem sido uma importante ferramenta de diagnóstico e terapia. Os raios X são absorvidos pelos ossos enquanto passam facilmente pelos outros tecidos.
        Em 1895 Wilhelm Konrad von Röntgen descobre acidentalmente os raios X quando estudava válvulas de raios catódicos. Verificou que algo acontecia fora da válvula e fazia brilhar no escuro focos fluorescentes. Eram raios capazes de impressionar chapas fotográficas através de papel preto. Produziam fotografias que revelavam moedas nos bolsos e os ossos das mãos. Estes raios desconhecidos são chamados simplesmente de "x".






     



        Nêutrons são partículas muito penetrantes. Elas se originam do espaço externo, por colisões
    de átomos na atmosfera, e por quebra ou ficção de certos átomos dentro do reator nuclear. Água e concreto são as formas mais comuns usadas como barreiras contra radiação por nêutrons.


    (fonte:www.fisica.net)

    Tipos de radiação




    Na natureza, existem 92 elementos. Cada elemento pode ter quantidades diferentes de nêutrons. Os núcleos com mesmo número de prótons, mas que diferem no número de nêutrons, são denominados isótopos de um mesmo elemento. Para determinadas combinações de nêutrons e prótons, o núcleo é estável – nesse caso, são denominados isótopos estáveis. Para outras combinações, o núcleo é instável (isótopos radioativos ou radioisótopos) e emitirá energia na forma de ondas eletromagnéticas ou de partículas, até atingir a estabilidade.
    Dá-se o nome genérico de radiação nuclear à energia emitida pelo núcleo. As principais formas de radiação são:
    i) emissão de nêutrons;
    ii) radiações gama, ou seja, radiação eletromagnética, da mesma natureza que a luz visível, as microondas ou os raios X, porém mais energética;
    iii) radiação alfa (núcleos de hélio, formados por dois prótons e dois nêutrons);
    iv) radiação beta (elétrons ou suas antipartículas, os pósitrons, cuja carga elétrica é positiva).
    Nas ciências nucleares, a unidade de energia geralmente utilizada é o elétron-volt (eV). As energias emitidas pelo núcleo são acima de 10 mil eV, valor que é cerca de bilhões de vezes menor que o das energias com que lidamos no dia-a-dia.


     Uma bomba como a de Hiroshima contém apenas 20 kg de matéria-prima, aproximadamente.
    A liberação de energia do núcleo se dá através de dois processos principais: decaimento radioativo (também chamado desintegração) e fissão.

    Radioatividade Natural

    Os danos que a radioatividade pode causar à saúde humana justificam as rigorosas normas de segurança adotadas nas atividades que usam a energia nuclear. Mas muitas pessoas podem estar sendo expostas, sem saber, a níveis elevados de radiação, por causa do  acúmulo de elementos radioativos em resíduos de processos industriais.
    Inúmeros países, inclusive o Brasil, realizam estudos sobre esse problema, visando reduzir ou eliminar os aumentos da radioatividade natural causados pelas tecnologias criadas pelo homem.

    Tecnologia humana aumenta o risco de exposição

    Toda a matéria existente no universo é constituída por átomos, que resultam de diferentes arranjos entre prótons, nêutrons e elétrons. Em função desses arranjos, os átomos adquirem propriedades físico-químicas bem definidas, que permitem identificar cada um deles como um elemento químico. No entanto, o mesmo elemento pode ocorrer em diferentes formas, denominadas isótopos, com comportamento químico idêntico. Isótopos de um mesmo elemento têm igual número de prótons, mas diferem no número de nêutrons, o que resulta em átomos mais ou menos instáveis.
    A instabilidade dos átomos está associada a um excesso de energia acumulada, que tende a ser liberada sob a forma de radiações. Nesse processo denominado decaimento,  o átomo livra-se do excesso de energia e torna-se mais estável. A radiação emitida pode ser pura energia eletromagnética ou conter ainda partículas saídas do núcleo do átomo. Quando há liberação de partículas, as propriedades químicas do átomo são alteradas e o elemento transforma-se em outro (figuras 1 e 2).
    Os átomos que decaem, emitindo radiação, são conhecidos como radioativos.. Essa radiação (com ou sem partículas) é chamada de “nuclear” por se originar do núcleo do átomo, e os dois tipos têm em comum a capacidade de interagir com a matéria à sua volta, alterando sua estrutura. Células vivas expostas a essa radiação, por exemplo, podem ser destruídas ou alteradas, em geral levando a doenças.
    A radioatividade é, assim, um processo natural, através do qual átomos instáveis evoluem em busca de configurações mais estáveis. O processo leva à transmutação de elementos químicos e à liberação de energia nuclear. Descoberto no final do século passado, o fenômeno foi desvendado e dominado pelos cientistas, e sua utilização disseminou-se, seja para benefício do homem (na medicina, por exemplo), seja com fins maléficos (caso das bombas nucleares). Desde sua descoberta, a radioatividade vem sendo associada ao aumento do câncer nas populações expostas tanto a fontes naturais quanto a fontes artificiais usadas de modo inadequado, ou em acidentes como a explosão do reator nuclear de Tchernobyl, na Rússia (1986), ou a abertura de uma cápsula de césio radioativo (137Cs) de uso medicinal em Goiânia (1987).

    A proteção contra as radiações

    A radioatividade pode ser nociva ao organismo humano, dependendo da intensidade ou da duração da exposição. Esse perigo já é bem conhecido, e os livros, a televisão e o cinema ajudaram a divulgá-lo. Mas o fenômeno também pode trazer importantes benefícios. Entre as aplicações pacíficas da energia nuclear estão, hoje, várias práticas médicas (como o tratamento do câncer e o diagnóstico de doenças) e pesquisas científicas (na bioquímica, na agricultura, na ecologia), além da produção de energia elétrica, a mais conhecida.
    Em função dos riscos ligados à radioatividade, as atividades que envolvem o uso da energia nuclear são regulamentadas pela Comissão Internacional de Radioproteção (ICRP, na sigla em inglês), uma instituição científica independente. A ICRP estabeleceu em 1977 três novos princípios básicos, que devem ser obedecidos por todas as empresas ou instituições (públicas ou privadas), para garantir o desenvolvimento seguro dessas atividades, e desde então vem realizando estudos e fazendo recomendações para atividades específicas.
    O primeiro desses princípios é a justificativa da prática. Nenhuma atividade que envolva exposições à radiação deve ser realizada, a menos que gere benefícios, aos indivíduos expostos ou à sociedade, que compensem os riscos associados à radiação. O segundo, a otimização, determina que, para qualquer fonte de radiação usada em uma atividade, a magnitude das doses individuais, o número de pessoas expostas e mesmo a eventualidade da ocorrência de exposições (quando não há certeza se isso acontecerá) devem ser mantidos no mais baixo nível razoavelmente aceitável, levando-se em conta os fatores sociais e econômicos. O terceiro princípio, a limitação de dose, diz que a exposição de indivíduos (em todas as práticas relevantes de uma atividade) deve obedecer a limites de dose ou a algum tipo de controle de risco, para assegurar que ninguém seja exposto a riscos considerados inaceitáveis.
    Em conjunto, esses princípios significam que é aceitável desenvolver atividades que envolvem o uso da energia nuclear, desde que isso represente um benefício para o ser humano, sem que este incorra em riscos que possam ser evitados.
    Os três princípios básicos acima constituem a base de atuação do Instituto de Radioproteção e Dosimetria (IRD), vinculado à Comissão Nacional de Energia Nuclear (CNEN), órgão federal encarregado de regulamentar, normatizar e fiscalizar todas as práticas envolvendo o uso da energia nuclear no país. A finalidade do IRD, como órgão de referência na proteção contra os efeitos nocivos da radioatividade, é realizar pesquisas na área da radioproteção e dosimetria (medidas de doses radiológicas), além de apoiar técnica e cientificamente a CNEN nos processos regulatórios e de controle de práticas que impliquem o uso da radiação ionizante.

    Um risco ampliado pelo homem

    Os seres humanos também podem estar expostos à radioatividade em situações que não envolvem o uso da energia nuclear, e que por isso não estariam sujeitas aos princípios de controle e limitação de dose. São fontes de radiação os isótopos naturais de diversos elementos químicos, presentes no solo, no ar e mesmo em seres vivos (até no organismo humano). Em geral, a exposição a essas fontes não alcança níveis perigosos, mas certas atividades tecnológicas podem aumentar os riscos. Essa possibilidade vem sendo investigada há algum tempo.
    A influência do homem sobre os níveis de exposição à radioatividade natural começou quando os ancestrais da espécie escolheram viver em cavernas e ampliou-se quando passaram a minerar e trabalhar metais e bens minerais. No primeiro caso, ao cobrir as entradas de cavernas com peles de animais, o homem primitivo reduziu a renovação do ar nesses ambientes, o que aumentou os níveis internos de radônio. Isso porque esse gás radioativo, produzido durante o decaimento do isótopo 238 de urânio (238U), é capaz de emanar das rochas onde é gerado.
    Tal situação é semelhante à vivida por mineiros que trabalham em galerias subterrâneas: o urânio, sempre presente nas rochas (em níveis apreciáveis em alguns casos), constitui uma fonte permanente de radônio, que emana e se acumula dentro das galerias. Caso não exista um sistema de ventilação eficiente, os trabalhadores podem ficar sujeitos a níveis de exposição superiores aos recomendados pela ICRP. É significativa, o que reforça essa possibilidade, a associação entre os teores de radônio em minas subterrâneas e o número de casos de câncer em mineiros.
    As indústrias do ciclo do combustível nuclear, incluindo lavra e beneficiamento de minério de urânio, enriquecimento desse elemento, reatores nucleares e plantas de reprocessamento são submetidas, no Brasil e no exterior, a um severo processo de licenciamento e controle. Isso as coloca, sem dúvida, entre as atividades industriais mais rigorosamente controladas. Vários avanços na área de segurança ocorridos no setor nuclear foram depois adotados pelo setor produtivo convencional (não nuclear). A percepção da opinião pública (às vezes equivocada) quanto aos riscos da energia nuclear certamente contribuiu para esse rigor no controle das instalações nucleares.
    Agora, um tema que vem despertando muito interesse científico e social é a real possibilidade de ocorrência de exposições à radiação em função de atividades não-nucleares. De fato, materiais usados por diferentes tipos de indústrias não-nucleares (como matérias-primas e componentes de produtos, ou descartados nos processos produtivos) apresentam elevada radioatividade natural. Tais materiais são conhecidos internacionalmente pela sigla NORM (de naturally occurring radioactive materials, ou seja, materiais em que a radioatividade ocorre naturalmente). Os processos industriais a que tais materiais são submetidos podem aumentar a concentração de elementos radioativos (e, portanto, os níveis de radiação emitida) e a exposição de trabalhadores e indivíduos do público à radioatividade.
    As pesquisas a respeito dos impactos radioativos associados às indústrias não-nucleares baseiam-se na hipótese de que, não sendo conhecidos os riscos a que os trabalhadores e a população estariam sujeitos em função dessas atividades, pode estar ocorrendo exposição inconsciente e indevida à radiação. Em resposta a essa possibilidade, órgãos governamentais e empresas públicas e privadas, em diversos países (desenvolvidos ou em desenvolvimento), vêm investindo em estudos científicos para definir a extensão do problema.
    Esses estudos abrem a possibilidade real de adoção de normas sobre o uso industrial de materiais e processos com risco potencial de impacto radiológico e sobre a necessária recuperação de áreas ambientais afetadas por tais atividades. Também servem para alertar as empresas que utilizam tais materiais e processos, levando-as a buscar a tecnologia adequada para eliminar ou controlar esse impacto.
    Problema potencial em vários setores

    Um exemplo que abrange muitos setores industriais, em especial a siderurgia, é a queima do carvão mineral, que contém elementos radioativos como urânio e tório. Estima-se que, em todo o mundo, sejam queimadas por ano 2,8 bilhões de toneladas de carvão, liberando 9 mil toneladas de tório e 3,6 mil de urânio para o meio ambiente, nas partículas presentes na fumaça e nas cinzas descartadas. Com a queima, são multiplicadas as concentrações (nas cinzas) de elementos radioativos gerados pelo decaimento natural dos isótopos 238 de urânio (238U) e 232 de tório (232Th). Elementos voláteis como o radônio e o isótopo 210 de chumbo (210Pb) tendem a ser liberados na atmosfera.
    Uma avaliação do impacto radiológico resultante da queima do carvão para gerar energia elétrica vem sendo realizada, no Reino Unido, pelo National Radiological Protection Board (NRPB), considerando várias vias de exposição: liberação de cinzas e radônio para atmosfera, descarte de cinzas, uso desse material como subproduto industrial e outras. Resultados preliminares indicam que as exposições mais elevadas resultam do emprego das cinzas na construção civil e que a liberação na atmosfera contamina a vegetação local.
    A ocorrência de elementos radioativos naturais no petróleo e no gás natural também pode aumentar a exposição à radiação. Quando o óleo é extraído do subsolo, vem acompanhado de sólidos e de água. Sob certas condições, sais de bário e cálcio (sulfatos e carbonatos) sofrem precipitação, carregando com eles os isótopos 226 e 228 do rádio, ambos radioativos. Com o tempo, esses precipitados entopem os dutos, devendo ser removidos e depositados de modo seguro, para evitar exposições à radioatividade. O problema foi observado em plataformas marítimas de petróleo do Mar do Norte, na Europa, em 1981 (e estima-se que existam, em todo o mundo, cerca de 6 mil plataformas desse tipo). Até hoje, porém, as avaliações realizadas mostram que os trabalhadores sofreram baixos níveis de exposição e que o problema se concentra na emissão de efluentes para o mar.
    A descarga no mar dessas e de outras águas de processos, contendo elevadas concentrações de elementos radioativos, pode fazer com que esses elementos se acumulem na cadeia alimentar marinha, até atingir altas concentrações no topo dessa cadeia (nos peixes). O consumo desses peixes (e outros animais) contaminados pode aumentar a exposição de seres humanos à radioatividade.
    Entre as indústrias em que os problemas de exposição à radiação podem ser mais significativos destacam-se as do ciclo de lavra e beneficiamento de minerais. Isso porque alguns minerais, ao se formarem, incorporaram urânio e tório em proporções superiores à média da crosta terrestre. A extração e o processamento industrial alteram as condições físico-químicas que esses materiais apresentam na natureza, o que pode levar ao lançamento de parcelas significativas dos elementos radioativos no meio ambiente. Um exemplo é a drenagem ácida: a pirita (FeS2) presente nas rochas é oxidada quando exposta ao oxigênio e à água, resultando na produção de ácido sulfúrico (H2SO4). Esse ácido tem a capacidade de lixiviar (remover) da rocha grandes quantidades de metais (radioativos ou não), que podem contaminar águas superficiais (rios, lagos e estuários) e subterrâneas.
    Mesmo que isso não aconteça, o próprio processamento de um minério pode concentrar ou mobilizar os elementos radioativos. O aumento da radioatividade natural em resíduos sólidos da mineração, efluentes líquidos e emissões gasosas, e também em produtos e subprodutos que venham a ser usados por outros setores industriais, pode resultar em maior exposição de trabalhadores e da população em geral.
    O problema pode ocorrer em muitas indústrias de mineração, em especial as de carvão, nióbio, ouro, ferro, minerais pesados (como zircônio e terras raras). Também merece destaque a indústria de fosfato: na produção do ácido fosfórico (H3PO4) são obtidas grandes quantidades de fosfogesso, subproduto constituído basicamente por sulfato de cálcio (CaSO4). Dependendo das concentrações de urânio e tório na rocha fosfática, o fosfogesso pode apresentar grandes quantidades dos isótopos 226 e 228 de rádio. Apesar do risco, esse subproduto é geralmente armazenado em pilhas, nas proximidades das fábricas, e em alguns casos é despejado em cursos d.água. O problema é maior ainda porque o fosfogesso, como as cinzas do carvão, pode ser usado na construção civil e na agricultura (como fertilizante).
    Quatro anos de estudos no Brasil
    A preocupação com os riscos do aumento da exposição à radioatividade natural também está presente no Brasil. Por determinação da CNEN, o IRD vem coordenando um programa de pesquisa bastante amplo para avaliar a extensão do problema no país (em especial no setor mineral), definir linhas de investigação prioritárias e propor estratégias de atuação em função dos resultados obtidos. Em um sentido mais amplo, esses resultados, além de garantir proteção aos trabalhadores dos setores envolvidos e à população, contribuem para que o setor industrial não seja surpreendido pela adoção eventual de medidas de controle internas ou mesmo externas, como barreiras alfandegárias decorrentes da globalização da economia.
    O programa de pesquisa, iniciado em 1996, inclui a avaliação de eventuais impactos da liberação de efluentes líquidos e gasosos por diferentes tipos de indústrias de mineração e dos riscos decorrentes de uma futura ocupação humana em áreas de influência de bacias de rejeitos e do uso de seus produtos e subprodutos por outras indústrias. Também é avaliada a exposição de operários nos locais de trabalho, incluindo determinação de elementos radioativos no organismo (em amostras de urina e fezes) e em aerossóis (partículas suspensas no ar), e do radônio acumulado nos locais de trabalho. Estuda-se ainda a viabilidade da alteração das rotas de processo e da recuperação econômica de resíduos, visando reduzir impactos ambientais.
    Para estudar as implicações ambientais dessas atividades foi desenvolvida uma metodologia de trabalho que começa na análise detalhada do processo operacional da indústria. Todo o seu modo de operação é examinado, desde os balanços de massa até os sistemas de tratamento e disposição de rejeitos. A seguir, a presença de elementos radioativos e nãoradioativos é identificada em amostras colhidas ao longo do circuito operacional. Com esses resultados é feito o balanço de massa, que permite conhecer quanta radioatividade entra no processo industrial e em que volume e de que forma ela sai (se em produtos, rejeitos sólidos, efluentes líquidos ou gases).
    Mas não basta medir as quantidades envolvidas no processo. É preciso saber que forma química têm os contaminantes potenciais: se estão facilmente disponíveis ou são mais resistentes aos processos físico-químicos atuantes no ambiente. A etapa seguinte é estimar, através de modelos matemáticos que simulam cenários possíveis, a concentração de poluentes nos compartimentos ambientais: águas de superfície, águas subterrâneas, sedimentos, peixes, vegetais potencialmente consumidos pelo homem, carne e leite. Tais dados, associados às taxas de consumo dos diferentes itens, permitem estimar a exposição humana à radioatividade.
    Em função das exposições estimadas calculam se os riscos radiológicos à saúde humana. Os valores obtidos indicam a necessidade ou não de medidas de correção ou controle da disposição de rejeitos, emissão de efluentes e gases ou reaproveitamento de materiais. Essa metodologia também pode ser aplicada em situações onde outros poluentes (não radioativos) estão envolvidos no diagnóstico de impacto ambiental.
    O processo operacional de uma indústria de lavra e beneficiamento de nióbio no Brasil (figura 3) permite exemplificar esse trabalho. As análises das amostras coletadas em cada etapa do processo evidenciaram o aumento da concentração de elementos radioativos nos resíduos da lixiviação (figura 4) e na escória (figura 5). Do ponto de vista gerencial, tais rejeitos devem ser separados dos demais e os locais onde serão depositados devem ser isolados de forma a evitar que qualquer pessoa (trabalhadores ou não) seja exposta à radioatividade. Um dado interessante é a concentração de urânio, em torno de 1.500ppm (partes por milhão), no material de lixívia, o que pode viabilizar seu aproveitamento como insumo para a produção de concentrado de urânio, a ser usado na geração de energia nucleoelétrica.
    No caso dos efluentes liberados para o ambiente, o cálculo das doses revela que os impactos para os cursos d.água são irrelevantes. No entanto, as concentrações dos isótopos 226 e 228 de rádio nas águas subterrâneas afetadas pelas bacias de rejeito onde são despejados os resíduos da lixiviação não permitem a liberação dessas águas para o meio ambiente sem algum tipo de tratamento (figura 6). Assim, as práticas adotadas pela empresa bombeamento contínuo da água dessas bacias e seu tratamento com sulfato de cálcio (CaSO4) não deve ser interrompido.
    Já em uma mineração de carvão investigada, o problema principal está no alto teor de urânio medido nas drenagens ácidas. A detecção de valores de radioatividade em torno de 100 becquerels por litro (Bq/l) nas águas resultantes dessas drenagens impede seu lançamento no ambiente sem qualquer tratamento, pois poderão expor a população a doses acima dos limites recomendados pela ICRP.
    Cabe destacar ainda dois trabalhos de pesquisadores do IRD sobre o emprego do fosfogesso: como material de construção e como fertilizante agrícola. O primeiro demonstrou que a inalação do isótopo 220 do radônio e de seus descendentes de vida curta emanados das paredes de um cômodo em cuja construção o fosfogesso tenha sido usado como componente da argamassa (e ainda com baixa ventilação e sem proteção - tinta - nas paredes) exporia um morador a até 80% do valor de dose total. Esse estudo concluiu que, para os cenários de uso considerados, os valores de dose não seriam significativos, mas mostrou que a presença desse isótopo no fosfogesso pode ser um fator limitante para seu emprego na construção civil. O segundo estudo indicou que os valores de dose individual resultantes da ingestão de produtos cultivados com o fosfogesso como fertilizante não representam um aumento de risco que impeça esse uso, mesmo no caso de aplicações sucessivas durante 100 anos.

    O futuro da radioproteção

    O aumento da radioatividade ambiental provocado por atividades humanas é um tema sujeito a intensa investigação. Atividades antes insuspeitas podem ser vistas hoje como fontes potenciais de exposição. Por isso, vários trabalhos científicos têm sido publicados sobre esse assunto e vêm sendo desenvolvidas tecnologias de medida de radiação. Também estão sendo estudadas regulamentações para restringir os riscos associados a essas exposições. Todos esses aspectos, porém, ainda são debatidos intensamente na comunidade científica internacional.
    Para ampliar a discussão dessa questão no país, o IRD e a Sociedade Brasileira de Biociências Nucleares (SBBN) realizaram no Rio de Janeiro, em setembro do ano passado, o 2º Technological Enhanced Natural Radiation Symposium (Simpósio sobre Radiação Natural Tecnologicamente Intensificada). Foram abordados, no encontro, aspectos relacionados ao monitoramento desses materiais, às técnicas de medida, à avaliação das exposições de indivíduos do público e trabalhadores, à experiência dos setores industriais, à recuperação de áreas contaminadas e à legislação sobre o problema.

    Efeitos da Radiação em Seres Vivos

    As células quando expostas à radiação sofrem ação de fenômenos físicos, químicos e biológicos. A radiação causa ionização dos átomos, que afeta moléculas, que poderão afetar células, que podem afetar tecidos, que poderão afetar órgãos, que podem afetar a todo o corpo.
    No entanto, tende-se a avaliar os efeitos da radiação em termos de efeitos sobre células, quando na verdade, a radiação interage somente com os átomos presente nas células e a isto se denomina ionização. Assim, os danos biológicos começam em conseqüência das interações ionizantes com os átomos formadores das células.
    O corpo humano é constituído por cerca de 5 x 1012 células, muitas das quais altamente especializadas para o desempenho de determinadas funções. Quanto maior o grau de especialização, isto é, quanto mais diferenciada for a célula, mais lentamente ela se dividirá. Uma exceção significativa a essa lei geral é dada pelos linfócitos, que, embora só se dividam em condições excepcionais, são extremamente radiossensíveis.
    Um organismo complexo exposto às radiações sofre determinados efeitos somáticos, que lhe são restritos e outros, genéticos, transmissíveis às gerações posteriores. Os fenômenos físicos que intervêm são ionização e excitação dos átomos. Estes são responsáveis pelo compartilhamento da energia da radiação entre as células.
    Os fenômenos químicos sucedem aos físicos e provocam rupturas de ligações entre os átomos formando radicais livres num intervalo de tempo pequeno.
    Os fenômenos biológicos da radiação são uma conseqüência dos fenômenos físicos e químicos. Alteram as funções específicas das células e são responsáveis pela diminuição da atividade da substância viva, por exemplo: perda das propriedades características dos músculos.
    Estas constituem as primeiras reações do organismo à ação das radiações e surgem geralmente para doses relativamente baixas.
    Além destas alterações funcionais os efeitos biológicos caracterizam-se também pelas variações morfológicas. Entende-se como variações morfológicas as alterações em certas funções essenciais ou a morte imediata da célula, isto é, dano na estrutura celular. É assim que as funções metabólicas podem ser modificadas ao ponto da célula perder sua capacidade de efetuar as sínteses necessárias à sua sobrevivência.
    Como se proteger? Mantenha distância, exponha-se o mínimo de tempo e use blindagem para deter as radiações. E em caso de acidente? Leia as informações da Defesa Civil.




































    Nenhum comentário:

    Postar um comentário